If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+70X+245=0
a = 1; b = 70; c = +245;
Δ = b2-4ac
Δ = 702-4·1·245
Δ = 3920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3920}=\sqrt{784*5}=\sqrt{784}*\sqrt{5}=28\sqrt{5}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(70)-28\sqrt{5}}{2*1}=\frac{-70-28\sqrt{5}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(70)+28\sqrt{5}}{2*1}=\frac{-70+28\sqrt{5}}{2} $
| 7x+2=2x+25 | | 9+2/5b=7/6b | | 4664x=78 | | (x-1)=(x+9)# | | 2(x=2)=16 | | 8x=18=58-2x | | 7x+9=15-x | | x/6+6=13 | | 159=8/6x | | -3+8x=20 | | 5-2x=1+10x | | 6x(x-1)=9-31x | | x=3.5(180-x) | | 0,8(x-5)=0,5(x+10) | | 9(x-30)2=0,5(x+4) | | x+20=4x-8 | | 25=1/2(2x+11+6x-1) | | 15x+6=35 | | 3/8-x/12=-12 | | -24=4c | | 12-5x=2x+40 | | (103-2x)+(4x-58)=90 | | 10x+(-19)=19+(-8x) | | 68=52-52+n=68-52=n16=n | | 18−x=2x+3 | | 2x+3=18−x | | 31-k=8 | | 2x=6-8 | | 11x+21=4x+49 | | 4⋅x√=43−3 | | ((2/a)+1)/(2/a)=3 | | 2(t+4)=2t-2 |